Home Natural Hazard Management Creating model of earthquake using UAVSAR and satellite data

Creating model of earthquake using UAVSAR and satellite data

2 Minutes Read

US: On 28 March, residents of Greater Los Angeles experienced the largest earthquake to strike the region since 2008. The magnitude 5.1 quake was centered near La Habra in northwestern Orange County about 21 miles (33 kilometers) east-southeast of Los Angeles, and was widely felt throughout Southern California. There have been hundreds of aftershocks, including one of magnitude 4.1.

Scientists at NASA's Jet Propulsion Laboratory, Pasadena, have developed a model of the earthquake, based on the distribution of aftershocks and other seismic information from the US Geological Survey. A new image based on the model shows what the earthquake may look like through the eyes of an interferometric synthetic aperture radar, such as NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). JPL scientists plan to acquire UAVSAR data from the region of the 28 March earthquake, possibly as soon as this week, and process the data to validate and improve the results of their model.

JPL scientists modeled the 28 March 28, 2014 magnitude 5.1 quake near Los Angeles based on USGS seismic data. This model image shows how the quake may appear to airborne radar, such as NASA's UAVSAR, which will survey the area soon. Blue shades indicate the greatest surface displacement. <b>Credit: </b>NASA/JPL-Caltech/USGS/Google Earth

Above: JPL scientists modeled the March 28, 2014 magnitude 5.1 quake near Los Angeles based on USGS seismic data. This model image shows how the quake may appear to airborne radar, such as NASA's UAVSAR, which will survey the area soon. Blue shades indicate the greatest surface displacement.

The model also estimated the maximum displacement of Earth's surface from the quake at approximately 0.4 inch (1 centimeter), which is at the threshold of what is detectable with UAVSAR. The region of greatest ground displacement is indicated by the darker blue area located in the right center of the image.

In November 2008, NASA JPL scientists began conducting a series of UAVSAR flights over regions of Northern and Southern California that are actively deforming and are marked by frequent earthquakes. About every six months, the scientists precisely repeat the same flight paths to produce images of ground deformation called interferograms. From these data, 3-D maps are being created for regions of interest, including the San Andreas and other California faults, extending from the Gulf of California in Mexico to Santa Rosa in the northern San Francisco Bay.

UAVSAR, which flies on a NASA C20-A aircraft from NASA's Armstrong Flight Research Center in California, measures ground deformation over large areas to a precision of 0.04 to 0.2 inches (0.1 to 0.5 centimeters).

Airborne UAVSAR mapping can allow a rapid response after an earthquake to determine what fault was the source and which parts of the fault slipped during the earthquake. Information about the earthquake source can be used to estimate what areas were most affected by an earthquake's shaking to guide rescue efforts and damage assessment.

The model was developed as part of NASA's QuakeSim project. The JPL-developed QuakeSim is a comprehensive, state-of-the-art software tool for simulating and understanding earthquake fault processes and improving earthquake forecasting. Initiated in 2002, QuakeSim uses NASA remote sensing and other earthquake-related data to simulate and model the behavior of faults in 3-D both individually and as part of complex, interacting systems. This provides long-term histories of fault behavior that can be used for statistical evaluation. QuakeSim also is used to identify regions of increased earthquake probabilities, called hotspots.

Source: NASA's Jet Propulsion Laboratory