CHANGE DETECTION AT TEMP CAMP

COL PANKAJ SHARMA

IN THE MODERN WORLD, THE NATION'S TECHNOLOGICAL PROWESS HAS BECOME INTEGRAL TO ITS NATIONAL POWER AND SECURITY.

Technological superiority has been instrumental in many a victory in battle.

GEOSPATIAL A FORCE MULTIPLIER FOR DEF AND INTERNAL SECURITY

RASTER TOOLS FOR CHANGE DETECTION AND INT GATHERING

THE THREE PARADIGMS OF INT GATHERING

- WHAT DETECTION / PRESENCE / ABSENCE
- WHERE LOCATION / CONTEXT / TEMPORAL
- WHEN TIMESTAMP / TIMELAG

WHY ?

WHAT SHOULD I DO

REMOTE SENSING CYCLE

- * RS IS THE VITAL SOURCE OF INFO FOR EFFECTIVE DECISION MAKING.
- * RECENT ADVANCEMENTS BROUGHT NUMEROUS IMPROVEMENT IN VARIOUS FD SUCH AS ENVIRONMENT STUDY, DISASTER MANAGEMENT, DEF AND SECURITY ETC.

RASTER

World into discrete square or rectangular cells laid out in a grid. Each cell has a value that is used to represent some characteristic of that location, such as temperature, elevation, or a spectral value.

Process That Enables To Ascertain The Changes In Specific Features After A Certain Time Frame

- DESCRIBED AS A PROCESS THAT OBSERVES THE DIFFERENCES OF AN OBJECT OR PHENOMENON AT DIFFERENT TIMES.
- CHANGE DETECTION INVOLVES THE APPLICATION OF MULTI-TEMPORAL DATASETS TO QUANTITATIVELY ANALYSE THE CHANGES.
- DATA FROM REMOTE SENSING WITH ITS SYNOPTIC AND REGULAR COVERAGE AT SHORT INTERVAL AND CONSISTENT IMAGE QUALITY PROVIDES A VIABLE SOURCE OF UPDATED INFORMATION WHICH CAN BE EXTRACTED EFFICIENTLY AND QUICKLY IN ORDER TO MONITOR TYPES AND EXTENT OF CHANGES.

WHY DO WE NEED IT

- LAND USE LAND COVER CHANGE MILITARY IMPLICATIONS
 GOING ANALYSIS
 - ✤ DEPLOYMENT ANALYSIS / MANAGEMENT
- HYDROLOGY
 - ***** FLOOD MAPPING FOR FLOODING AND FLOOD CONTROL
 - ***** RUN OFF ESTIMATION (DISCHARGE RATE)
 - DEFORESTATION (AVAILABLE COVER)
- *** CHANGES IN INFRASTRUCTURE (PERMANENT)**
- CHANGES IN INFRASTRUCTURE (TEMPORARY)
 - ✤ WEAPONS AND EQUIPMENT
 - ✤ VEHICLES
 - **SHELTERS LIVING AND STORAGE**
 - ✤ MOVEMENT

LAUNCH SITE

TECH & HELIPAD AREA

COMN CENTRE

ZOOMED VIEW : CHANGE DETECTION OF LAUNCH SITE

11

BASIC REQUIREMENTS

- TWO RASTERS BEING ANALYSED SHOULD BE OF SAME RESOLUTION :-
 - **SPATIAL (PER PIXEL RESOLUTION)**
 - *** SPECTRAL (MULTISPECTRAL V/S HYPERSPECTRAL)**
 - ***** RADIOMETRIC
 - *** (TEMPORAL) CHANGE IN PHENOLOGY**
- * RASTERS SHOULD BE GEO RECTIFIED SAME PIXEL SHOULD BE AT SAME SPATIAL LOCATION IN BOTH THE IMAGES
- PREFERABLY FROM SAME SENSOR

TECHNIQUES

TECHNIQUES OR TOOLS

- VISUAL VISUAL INTERPRETATION OF CHANGES IN REFLECTANCE IN TWO IMAGES
 - ORTHORECTIFIED
 - **CORRECTED FOR ATMOSPHERIC CORRECTIONS**
- ALGEBRA BASED CHANGE DETECTION
 DIFFERENCING
 - * REGRESSION ANALYSIS
 - ✤ BAND RATIOING
 - * USING INDEX VALUES
 - **CHANGE VECTOR ANALYSIS**
- * TRANSFORMATION BASED PRINCIPAL COMPONENT ANALYSIS AND CHI-SQUARE

WHAT DO WE HAVE

For Int Gathering

BASIC REQUIREMENTS

- TWO RASTERS BEING ANALYSED SHOULD BE OF SAME RESOLUTION :-
 - **SPATIAL (PER PIXEL RESOLUTION)**
 - SPECTRAL (PAN, MULTISPECTRAL, HYPER)
 - RADIOMETRIC (8BIT,16BIT)
 - *** TEMPORAL (CHANGE IN PHENOLOGY)**
- * RASTERS SHOULD BE GEO RECTIFIED SAME PIXEL SHOULD BE AT SAME SPATIAL LOCATION IN BOTH THE IMAGES
- PREFERABLY FROM SAME SENSOR

PREVIOUS IMAGERIES

- C2B 21 MAY 17 & EROS B 31 MAY 17, EROS B 01 JUN 17,
- C2B 04 & 06 JUN 17 & (C2C -26 JUN 17 100% CLOUDY IMAGE).
- <u>RISAT2 01 JUL 2017</u>
- 54 -57 X VEHS / TLRS.
- 02 X VEHS OBS IN NEW TRS / LIKELY TRG AREA.
- 88-92 X TENTS/SHELTERS.
- PRESENT IMAGERY
- <u>C2A 07 JUL 2017</u>
- 54 57 X VEHS / TLRS NOT CLEARLY VISIBLE.
- NO VEHS OBS IN LIKELY TRG AREA.
- 12 X TENTS VISIBLE & BALANCE 78-80 TENTS NOT CLEARLY VISIBLE.

SETTLEMENT AREA

NEW TEMP CAMP SITES 29,9498N, 90,3104E - 12 KM

PREVIOUS IMAGERY : C2B 03 MAY 17

• 01 X SETTLEMENT AREA

• 02 X UNOCCUPIED TEMP CAMP SITES

PRESENT IMAGERY : RISAT 2- 05 JUL 17

• 175-184 X VEHS / TLRS OBS • 174 -180 X TENTS / SHELTERS OBS

CHANGE DETECTION : RADIOMETRIC RESOLUTION ??

CHANGE DETECTION : CONSTRAINTS

BASIC REQUIREMENTS

TWO RASTERS BEING ANALYSED SHOULD BE OF SAME RESOLUTION :-

- ♦ SPATIAL (PER PIXEL RESOLUTION)
- SPECTRAL (MULTISPECTRAL V/S HYPERSPECTRAL)
- *** RADIOMETRIC**
- * (TEMPORAL) CHANGE IN PHENOLOGY
- * PREFERABLY FROM SAME SENSOR

* RASTERS SHOULD BE GEO RECTIFIED – SAME PIXEL SHOULD BE AT SAME SPATIAL LOCATION IN BOTH THE IMAGES

CHANGE DETECTION : GEORECTIFICATION??

BASIC REQUIREMENTS

TWO RASTERS BEING ANALYSED SHOULD BE OF SAME RESOLUTION :-

- * SPATIAL (PER PIXEL RESOLUTION)
- SPECTRAL (MULTISPECTRAL V/S HYPERSPECTRAL)
- *** RADIOMETRIC**
- * (TEMPORAL) CHANGE IN PHENOLOGY
- * PREFERABLY FROM SAME SENSOR
- * RASTERS SHOULD BE GEO RECTIFIED SAME PIXEL SHOULD BE AT SAME SPATIAL LOCATION IN BOTH THE IMAGES

WHAT DO WE HAVE

For Int Gathering

VISUAL – VISUAL INTERPRETATION OF CHANGES IN REFLECTANCE IN TWO IMAGES

TECNOLOGY ONLY THEORY & DEMOS

WHAT DO WE NEED

WAY AHEAD

INDUSTRY HAS TO UNDERSTAND THE REQUIREMENTS

APPLICATIONS TO SUIT DYNAMIC NATURE OF INT GATHERING

DON'T SHOW WHAT YOU HAVE DEVELOP WHAT WE NEED

TEST DATA MUST BE REALISTIC

JAI HIND